Eccentricity Estimation in Ultra-precision Rotating Devices based on a Neuro-fuzzy model
نویسندگان
چکیده
Monitoring complex electro-mechanical processes is not straightforward despite the arsenal of techniques nowadays available. This paper presents a method based on Adaptive-Network-based Fuzzy Inference System (ANFIS) to estimate eccentricity of its spinning axis. The method is experimentally tested on an ultra-precision rotating device commonly used for micro-scale turning. The developed model has three inputs, two obtained from a frequency domain analysis of a vibration signal and the third, which is the device rotation frequency. A comparative study demonstrates that an adaptive neural-fuzzy inference system model provides better error-based performance indices for detecting imbalance than a non-linear regression model. This simple, fast, and non-intrusive imbalance detection strategy is proposed to counteract eventual deterioration in the performance of ultra-high precision rotating machines due to vibrations.
منابع مشابه
Detecting Nano-Scale Vibrations in Rotating Devices by Using Advanced Computational Methods
This paper presents a computational method for detecting vibrations related to eccentricity in ultra precision rotation devices used for nano-scale manufacturing. The vibration is indirectly measured via a frequency domain analysis of the signal from a piezoelectric sensor attached to the stationary component of the rotating device. The algorithm searches for particular harmonic sequences assoc...
متن کاملHydrograph Estimation based on Various Components of Rainfall Using Adaptive Neuro-Fuzzy Inference System in Kasilian Watershed
Flood hydrograph preparation and estimation are considered a comprehensive information for soil and water managers and planners. While it is not simply possible preparing it for all watersheds. Therfore suitable flood hydrograph estimation and modeling seems to be necessary using available rainfall data. The study area is located in Kasilian representative watershed in Mazandaran province compr...
متن کاملADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE
The tunnel boring machine (TBM) penetration rate estimation is one of the crucial and complex tasks encountered frequently to excavate the mechanical tunnels. Estimating the machine penetration rate may reduce the risks related to high capital costs typical for excavation operation. Thus establishing a relationship between rock properties and TBM pe...
متن کاملA COMPREHENSIVE STUDY ON THE CONCRETE COMPRESSIVE STRENGTH ESTIMATION USING ARTIFICIAL NEURAL NETWORK AND ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
This research deals with the development and comparison of two data-driven models, i.e., Artificial Neural Network (ANN) and Adaptive Neuro-based Fuzzy Inference System (ANFIS) models for estimation of 28-day compressive strength of concrete for 160 different mix designs. These various mix designs are constructed based on seven different parameters, i.e., 3/4 mm sand, 3/8 mm sand, cement conten...
متن کاملNusselt Number Estimation along a Wavy Wall in an Inclined Lid-driven Cavity using Adaptive Neuro-Fuzzy Inference System (ANFIS)
In this study, an adaptive neuro-fuzzy inference system (ANFIS) was developed to determine the Nusselt number (Nu) along a wavy wall in a lid-driven cavity under mixed convection regime. Firstly, the main data set of input/output vectors for training, checking and testing of the ANFIS was prepared based on the numerical results of the lattice Boltzmann method (LBM). Then, the ANFIS was develope...
متن کامل